Sums of Hecke Eigenvalues over Quadratic Polynomials

نویسنده

  • VALENTIN BLOMER
چکیده

Let f(z) = P n a(n)n e(nz) ∈ Sk(N,χ) be a cusp form for Γ0(N), weight k > 4 and character χ. Let q(x) = x + sx+ t ∈ Z[x] be a quadratic polynomial. It is shown that

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power Sums of Hecke Eigenvalues and Application

We sharpen some estimates of Rankin on power sums of Hecke eigenvalues, by using Kim & Shahidi’s recent results on higher order symmetric powers. As an application, we improve Kohnen, Lau & Shparlinski’s lower bound for the number of Hecke eigenvalues of same signs.

متن کامل

Hypergeometric 3f 2(1/4) Evaluations over Finite Fields and Hecke Eigenforms

Let H denote the hypergeometric 3F2 function over Fp whose three numerator parameters are quadratic characters and whose two denominator parameters are trivial characters. In 1992, Koike posed the problem of evaluating H at the argument 1/4. This problem was solved by Ono in 1998. Ten years later, Evans and Greene extended Ono’s result by evaluating an infinite family of 3F2(1/4) over Fq in ter...

متن کامل

Centre de Physique Théorique

The irreducible representations (irreps) of the Hecke algebra Hn(q) are shown to be completely characterized by the fundamental invariant of this algebra, Cn. This fundamental invariant is related to the quadratic Casimir operator, C2, of SUq(N), and reduces to the transposition class-sum, [(2)]n, of Sn when q → 1. The projection operators constructed in terms of Cn for the various irreps of Hn...

متن کامل

On Sums of Hecke Series in Short Intervals

The purpose of this paper is to obtain a bound for sums of Hecke series in short intervals which, as a by-product, gives a new bound for Hj( 1 2 ). We begin by stating briefly the necessary notation and some results involving the spectral theory of the non-Euclidean Laplacian. For a competent and extensive account of spectral theory the reader is referred to Y. Motohashi’s monograph [13]. Let {...

متن کامل

Gaussian Distribution for the Divisor Function and Hecke Eigenvalues in Arithmetic Progressions

We show that, in a restricted range, the divisor function of integers in residue classes modulo a prime follows a Gaussian distribution, and a similar result for Hecke eigenvalues of classical holomorphic cusp forms. Furthermore, we obtain the joint distribution of these arithmetic functions in two related residue classes. These results follow from asymptotic evaluations of the relevant moments...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008